BMP-2 gene activated muscle tissue fragments for osteochondral defect regeneration in the rabbit knee. Betz VM, Keller A, Foehr P, Thirion C, Salomon M, Rammelt S, Zwipp H, Burgkart R, Jansson V, Müller PE, Betz OB. J Gene Med. 19:9-10, 2017. https://pubmed.ncbi.nlm.nih.gov/28744947/
Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. Mayer-Wagner S, Hammerschmid F, Redeker JI, Schmitt B, Holzapfel BM, Jansson V, Betz OB, Müller PE. 38(12):2615-21, 2014. https://pubmed.ncbi.nlm.nih.gov/25030964/
A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Gouze J, Gouze E, Palmer G D, Liew VS, Pascher A, Betz OB, Thornhill TS, Evans CH, Grodzinsky AJ, Ghivizzani SC. Arthritis Res Ther. 5(5):R301-9, 2003. https://pubmed.ncbi.nlm.nih.gov/12932294/
Systemic hypoxia alters gene expression levels of structural proteins and growth factors in knee joint cartilage. Hofstaetter JG, Wunderlich L, Samuel RE, Saad FA, Choi YH, Glimcher MJ. Biochem Biophys Res Commun. 330(2):386-94, 2010. https://pubmed.ncbi.nlm.nih.gov/15796895/
Autoimmune response to transthyretin in juvenile idiopathic arthritis. Clement C, Moncrieffe H, Lele A, Janow G, Becerra A, Bauli F, Saad AF, Perino G, Montagna C, Cobelli N, Hardin J, Stern LJ, Ilowite N, Porcelli SA, Santambrogio L. JCI Insight.
1(2):e85633, 2010. https://pubmed.ncbi.nlm.nih.gov/26973882/
Differential expression of VEGEF isoforms and receptors in knee joint menisci under systemic hypoxia. Hofstaetter JG, Saad FA, Samule RE, Wunderlich L, Choi YH Glimcher MJ. Biochem Biophys Res Commun. 324(2): 667-72, 2010. https://pubmed.ncbi.nlm.nih.gov/15474479/
Comparing effects of perfusion und hydrostatic pressure on gene profiles of human chondrocyte. Zhu G, Mayer-Wagner S, Schroeder C, Woiczinski M, Blum H, Lavagi I, Krebs S, Redeker J, Hoelzer A, Jansson V, Betz OB, Mueller PE. J Biotechnol. 210: 59-65, 2015. https://pubmed.ncbi.nlm.nih.gov/26133928/
Development of gene-based therapies for cartilage repair. Palmer G, Pascher A, Gouze E, Gouze J-N, Betz OB, Spector M, Robbins PD, Evans CH, Ghivizzani SC. Review Crit Rev Eukaryot Gene Expr. 12(4):259-73, 2002. https://pubmed.ncbi.nlm.nih.gov/12641395/
Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Palmer GD, Steinert A, Pascher A, Gouze E, Gouze J-N, Betz OB, Johnstone B, Evans CH, Ghivizzani SC. Mol Ther. 12(2):219-28., 2005. https://pubmed.ncbi.nlm.nih.gov/16043093/
Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia. Ren B, Betz OB, Seitz D, Thirion C, Salomon M, Jansson V, Müller PE, Betz VM. Int J Mol Sci. 2022 Feb 28;23(5):2712, 2022. https://pubmed.ncbi.nlm.nih.gov/35269855/
Osteoinduction within adipose tissue fragments by heterodimeric bone morphogenetic Proteins-2/6 and -2/7 versus homodimeric bone morphogenetic protein-2: Therapeutic implications for bone regeneration. Betz VM, Ren B, Betz OB, Jansson V, Müller PE. J Gene Med. 23(3):e3311, 2021. https://pubmed.ncbi.nlm.nih.gov/33527563/
Gene activated adipose tissue fragments as advanced autologous biomaterials for bone regeneration: osteogenic differentiation within the tissue and implications for clinical translation. Ren B, Betz VM, Thirion C, Salomon M, Klar RM, Jansson V, Müller PE, Betz OB. Sci Rep. 9(1):224, 2019. https://pubmed.ncbi.nlm.nih.gov/30659209/
Recent advances in gene-enhanced bone tissue engineering. Betz VM, Kochanek S, Rammelt S, Müller PE, Betz OB, Messmer C. J Gene Med. 20(6):e3018, 2018. https://pubmed.ncbi.nlm.nih.gov/29601661/
Osseous differentiation of human fat tissue grafts: From tissue engineering to tissue differentiation. Bondarava M, Cattaneo C, Ren B, Thasler WE, Jansson V, Müller PE, Betz OB. Sci Rep. 7:39712, 2017. https://pubmed.ncbi.nlm.nih.gov/28054585/
Repair of large segmental bone defects: BMP-2 gene activated muscle grafts vs. autologous bone grafting. Betz OB, Betz VM, Schröder C, Penzkofer R, Göttlinger M, Mayer-Wagner S, Augat P, Jansson V, Müller PE. BMC Biotechnol 8:13:65, 2013.
https://pubmed.ncbi.nlm.nih.gov/23927083/
Bone tissue engineering and repair by gene therapy. Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Front Biosci. 13:833-41, 2008. https://pubmed.ncbi.nlm.nih.gov/17981592/
Novel insights into the complex architecture of osteoporosis molecular genetics. Saad AF. Ann NY Acad Sci. 1462 (1): 37 - 52, 2020.
https://pubmed.ncbi.nlm.nih.gov/31556133/
Proteomic analysis of mineralising osteoblasts identifies novel genes related to bone matrix mineralisation. Saad AF,Hofstaetter JG. Int Orthop. 35(3):447-51, 2011.
https://pubmed.ncbi.nlm.nih.gov/20556378/
Morphometry of the kangaroo spine and its comparison with human spinal data. Wilke HJ, Betz VM, Kienle A. J Anat. 238(3):626-642, 2021
https://pubmed.ncbi.nlm.nih.gov/33025596/
Biomechanical in vitro evaluation of the kangaroo spine in comparison with human spinal data. Wilke HJ, Betz VM, Kienle A. J Anat. J Anat. 243(1):128-137, 2023
https://pubmed.ncbi.nlm.nih.gov/36929138/
Improvement of tendon repair using muscle grafts transduced with TGF-β1 cDNA. Majewski M, Porter R, Betz OB, Betz VM, Clahsen H, Flückiger R, Evans CH. Eur Cell Mater. 16:23:94-101, 2012. https://pubmed.ncbi.nlm.nih.gov/22354460/
Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Majewski M, Betz O, Ochsner PE, Liu F, Porter RM, Evans CH. Gene Ther.15(16):1139-46, 2008 https://pubmed.ncbi.nlm.nih.gov/18432278/
Migration of Mesenchymal Stem Cells of Bursal Tissue after Rotator Cuff Repair in Rats. Safi E, Ficklscherer A, Bondarava M, Betz OB, Zhang A, Jansson V, Müller PE.
Joints. 13;6(1):4-9, 2018. https://pubmed.ncbi.nlm.nih.gov/29675500/
Duchenne Muscular Dystrophy Gene Therapy. Saad FA, Saad JF, Siciliano G, Merlini L, Angelini C. Curr Gene Ther. 24(1):17-28, 2024. https://pubmed.ncbi.nlm.nih.gov/36411557/
Gene Therapy for Rare Genetic Diseases. Lundstrom K, Yannaki E, Chou J, Saad FA. Curr Gene Ther. 24(1):4-5, 2024. https://pubmed.ncbi.nlm.nih.gov/36959131/
Advances in Dystrophinopathy Diagnosis and Therapy. Saad FA, Siciliano G, Angelini C. Biomolecules.13(9):1319., 2023. https://pubmed.ncbi.nlm.nih.gov/37759719/
Dystrophin-positive myotubes in innervated muscle cultures from Duchenne and Becker muscular dystrophy patients. Fanin M, Hoffman EP, Saad FA, Martinuzzi A, Danieli GA, Angelini C. Neuromuscul Disord. 3(2):119-27., 1993. https://pubmed.ncbi.nlm.nih.gov/8358237/
Extra-muscle involvement in dystrophinopathies: an electroretinography and evoked potential study. Girlanda P, Quartarone A, Buceti R, Sinicropi S, Macaione V, Saad FA, Messina L, Danieli GA, Ferreri G, Vita G. J Neurol Sci. 146(2):127-32., 1997
Gene Therapy for Alzheimer and Parkinson Diseases. Saad JF, Saad FA. Curr Gene Ther. 23(3):163-169, 2023. https://pubmed.ncbi.nlm.nih.gov/37114789/
Gene-activated fat grafts for the repair of spinal cord injury: a pilot study. Betz VM, Sitoci-Ficici KH, Uckermann O, Leipnitz E, Iltzsche A, Thirion C, Salomon M, Zwipp H, Schackert G, Betz OB, Kirsch M. Acta Neurochir (Wien). 158(2):367-78, 2016. https://pubmed.ncbi.nlm.nih.gov/26592254/